Properties

Label 800.814.1.a1.a1
Order $ 2^{5} \cdot 5^{2} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{20}.C_{20}$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Index: $1$
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $a, b^{20}, c^{5}, b^{8}, b^{5}, c^{2}, b^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), and metabelian.

Ambient group ($G$) information

Description: $C_2\times C_{20}.C_{20}$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_2\times C_4^2\times C_2\wr C_2^2)$
$\operatorname{Aut}(H)$ $C_5:(C_2\times C_4^2\times C_2\wr C_2^2)$
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{20}$
Normalizer:$C_2\times C_{20}.C_{20}$
Complements:$C_1$
Maximal under-subgroups:$C_2\times C_{10}\times C_{20}$$C_{10}:C_{40}$$C_{10}:C_{40}$$C_{20}.C_{20}$$C_{20}.C_{20}$$C_{20}.C_{20}$$C_{20}.C_{20}$$C_{10}:\OD_{16}$$C_{10}\times \OD_{16}$

Other information

Möbius function$1$
Projective image$D_{10}$