Properties

Label 78732.fx.3.E
Order $ 2^{2} \cdot 3^{8} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^7.D_6$
Order: \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \)
Index: \(3\)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(19,20,22)(21,25,23)(24,26,27), (1,2,5)(4,9,7,13,11,17)(8,14,16,18,12,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^8.D_6$
Order: \(78732\)\(\medspace = 2^{2} \cdot 3^{9} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5\times C_{11}^2:C_{40}$, of order \(8503056\)\(\medspace = 2^{4} \cdot 3^{12} \)
$\operatorname{Aut}(H)$ $\SOPlus(4,4)$, of order \(472392\)\(\medspace = 2^{3} \cdot 3^{10} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_3^7.D_6$
Normal closure:$C_3^8.D_6$
Core:$C_3^7.C_6$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed