Properties

Label 78732.fx
Order \( 2^{2} \cdot 3^{9} \)
Exponent \( 2 \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3 \)
$\card{Z(G)}$ \( 3 \)
$\card{\Aut(G)}$ \( 2^{4} \cdot 3^{12} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \cdot 3^{4} \)
Perm deg. $27$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,2,5)(4,9,7,13,11,17)(8,14,16,18,12,15)(20,22)(21,24,23,26,25,27), (1,4)(2,7)(3,8,6,12,10,16)(5,11)(9,13,17)(19,21,22,25,20,23)(24,26), (1,3,5,10,2,6)(4,8,7,12,11,16)(9,15,17,14,13,18)(19,20,22)(21,23,25)(24,27,26) >;
 
Copy content gap:G := Group( (1,2,5)(4,9,7,13,11,17)(8,14,16,18,12,15)(20,22)(21,24,23,26,25,27), (1,4)(2,7)(3,8,6,12,10,16)(5,11)(9,13,17)(19,21,22,25,20,23)(24,26), (1,3,5,10,2,6)(4,8,7,12,11,16)(9,15,17,14,13,18)(19,20,22)(21,23,25)(24,27,26) );
 
Copy content sage:G = PermutationGroup(['(1,2,5)(4,9,7,13,11,17)(8,14,16,18,12,15)(20,22)(21,24,23,26,25,27)', '(1,4)(2,7)(3,8,6,12,10,16)(5,11)(9,13,17)(19,21,22,25,20,23)(24,26)', '(1,3,5,10,2,6)(4,8,7,12,11,16)(9,15,17,14,13,18)(19,20,22)(21,23,25)(24,27,26)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(57449706449530738645401602738726575991066721086855450475003358948585159821749776309180116567843821050961818572637294983378490824485010812321671935,78732)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.7; f = G.8; g = G.9; h = G.11;
 

Group information

Description:$C_3^8.D_6$
Order: \(78732\)\(\medspace = 2^{2} \cdot 3^{9} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_5\times C_{11}^2:C_{40}$, of order \(8503056\)\(\medspace = 2^{4} \cdot 3^{12} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 2, $C_3$ x 9
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and supersolvable (hence solvable and monomial).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 6 9 18
Elements 1 495 8018 46890 11664 11664 78732
Conjugacy classes   1 3 655 244 16 8 927
Divisions 1 3 349 130 10 5 498
Autjugacy classes 1 3 43 26 6 3 82

Minimal presentations

Permutation degree:$27$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h \mid a^{6}=b^{6}=c^{3}=d^{3}=e^{3}=f^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([11, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 22, 1855460, 1257610, 90, 1155795, 481826, 3606773, 697383, 3548166, 2408885, 683326, 408216, 56876, 6529, 142589, 5089, 3952484, 3658465, 851826, 474053, 80242, 10755, 1559, 1273, 393, 320791]); a,b,c,d,e,f,g,h := Explode([G.1, G.3, G.5, G.6, G.7, G.8, G.9, G.11]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "e", "f", "g", "g3", "h"]);
 
Copy content gap:G := PcGroupCode(57449706449530738645401602738726575991066721086855450475003358948585159821749776309180116567843821050961818572637294983378490824485010812321671935,78732); a := G.1; b := G.3; c := G.5; d := G.6; e := G.7; f := G.8; g := G.9; h := G.11;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(57449706449530738645401602738726575991066721086855450475003358948585159821749776309180116567843821050961818572637294983378490824485010812321671935,78732)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.7; f = G.8; g = G.9; h = G.11;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(57449706449530738645401602738726575991066721086855450475003358948585159821749776309180116567843821050961818572637294983378490824485010812321671935,78732)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.7; f = G.8; g = G.9; h = G.11;
 
Permutation group:Degree $27$ $\langle(1,2,5)(4,9,7,13,11,17)(8,14,16,18,12,15)(20,22)(21,24,23,26,25,27), (1,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,2,5)(4,9,7,13,11,17)(8,14,16,18,12,15)(20,22)(21,24,23,26,25,27), (1,4)(2,7)(3,8,6,12,10,16)(5,11)(9,13,17)(19,21,22,25,20,23)(24,26), (1,3,5,10,2,6)(4,8,7,12,11,16)(9,15,17,14,13,18)(19,20,22)(21,23,25)(24,27,26) >;
 
Copy content gap:G := Group( (1,2,5)(4,9,7,13,11,17)(8,14,16,18,12,15)(20,22)(21,24,23,26,25,27), (1,4)(2,7)(3,8,6,12,10,16)(5,11)(9,13,17)(19,21,22,25,20,23)(24,26), (1,3,5,10,2,6)(4,8,7,12,11,16)(9,15,17,14,13,18)(19,20,22)(21,23,25)(24,27,26) );
 
Copy content sage:G = PermutationGroup(['(1,2,5)(4,9,7,13,11,17)(8,14,16,18,12,15)(20,22)(21,24,23,26,25,27)', '(1,4)(2,7)(3,8,6,12,10,16)(5,11)(9,13,17)(19,21,22,25,20,23)(24,26)', '(1,3,5,10,2,6)(4,8,7,12,11,16)(9,15,17,14,13,18)(19,20,22)(21,23,25)(24,27,26)'])
 
Transitive group: 36T18810 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^8$ . $D_6$ $C_3^7$ . $S_3^2$ $(C_3^8.C_2)$ . $S_3$ (4) $C_3^7$ . $(C_6:S_3)$ all 70

Elements of the group are displayed as permutations of degree 27.

Homology

Abelianization: $C_{2} \times C_{6} \simeq C_{2}^{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 144 normal subgroups (60 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_3$ $G/Z \simeq$ $C_3^6.(C_6\times S_3)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^7.C_3$ $G/G' \simeq$ $C_2\times C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3^5$ $G/\Phi \simeq$ $C_3^2:S_3^2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^8.C_3$ $G/\operatorname{Fit} \simeq$ $C_2^2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^8.D_6$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^3$ $G/\operatorname{soc} \simeq$ $C_3^5:D_6$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^8.C_3$

Subgroup diagram and profile

Series

Derived series $C_3^8.D_6$ $\rhd$ $C_3^7.C_3$ $\rhd$ $C_3^4$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^8.D_6$ $\rhd$ $C_3^7.C_3.C_6$ $\rhd$ $C_3^8.C_3$ $\rhd$ $C_3^7.C_3$ $\rhd$ $C_3^7$ $\rhd$ $C_3^6$ $\rhd$ $C_3^5$ $\rhd$ $C_3^4$ $\rhd$ $C_3^3$ $\rhd$ $C_3^2$ $\rhd$ $C_3$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^8.D_6$ $\rhd$ $C_3^7.C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_3$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $927 \times 927$ character table is not available for this group.

Rational character table

The $498 \times 498$ rational character table is not available for this group.