Subgroup ($H$) information
| Description: | $C_3^7.D_6$ | 
| Order: | \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \) | 
| Index: | \(3\) | 
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Generators: | $\langle(1,7,9)(2,11,13)(3,16,15)(4,17,5)(6,8,18)(10,12,14)(19,25,24)(20,23,26) \!\cdots\! \rangle$ | 
| Derived length: | $3$ | 
The subgroup is maximal, nonabelian, and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $C_3^8.D_6$ | 
| Order: | \(78732\)\(\medspace = 2^{2} \cdot 3^{9} \) | 
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_5\times C_{11}^2:C_{40}$, of order \(8503056\)\(\medspace = 2^{4} \cdot 3^{12} \) | 
| $\operatorname{Aut}(H)$ | $S_5^2:C_2^2$, of order \(944784\)\(\medspace = 2^{4} \cdot 3^{10} \) | 
| $\card{W}$ | not computed | 
Related subgroups
| Centralizer: | not computed | 
| Normalizer: | $C_3^7.D_6$ | 
| Normal closure: | $C_3^8.D_6$ | 
| Core: | $C_3^7.C_6$ | 
Other information
| Number of subgroups in this autjugacy class | $3$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | not computed | 
| Projective image | not computed | 
