Properties

Label 77760.p.40.b1
Order $ 2^{3} \cdot 3^{5} $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2.S_3^3$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(1,3,6,8,4,5)(2,7)(12,13,14), (1,6,4)(2,8,7,3,9,5)(10,11)(12,14), (2,9,7), (4,6)(5,8)(7,9), (3,5,8), (1,4,6), (1,3,2,6,5,7,4,8,9), (1,8,4,3,6,5)(7,9)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and rational.

Ambient group ($G$) information

Description: $A_5\times S_3\wr S_3$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_3^3.S_3^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
$W$$C_3^2.S_3^3$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^2.S_3^3$
Normal closure:$A_5\times S_3\wr S_3$
Core:$C_3^2:S_3$
Minimal over-subgroups:$A_5\times C_3^3:D_6$$S_3^4:S_3$
Maximal under-subgroups:$C_3^3:S_3^2$$\He_3:S_3^2$$C_3^3:S_3^2$$C_3^4:D_6$$C_3^3:S_3^2$$C_3^4:D_6$$C_3^3:S_3^2$$C_2\times C_3^3:D_6$$C_3:S_3^3$$C_3.S_3^3$

Other information

Number of subgroups in this autjugacy class$40$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$A_5\times S_3\wr S_3$