Subgroup ($H$) information
| Description: | $C_3^2.S_3^3$ |
| Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
| Index: | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Generators: |
$\langle(1,3,6,8,4,5)(2,7)(12,13,14), (1,6,4)(2,8,7,3,9,5)(10,11)(12,14), (2,9,7), (4,6)(5,8)(7,9), (3,5,8), (1,4,6), (1,3,2,6,5,7,4,8,9), (1,8,4,3,6,5)(7,9)\rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), and rational.
Ambient group ($G$) information
| Description: | $A_5\times S_3\wr S_3$ |
| Order: | \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \) |
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $C_3^3.S_3^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \) |
| $W$ | $C_3^2.S_3^3$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $40$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $1$ |
| Projective image | $A_5\times S_3\wr S_3$ |