Properties

Label 77760.p.4.b1
Order $ 2^{4} \cdot 3^{5} \cdot 5 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_5\times C_3^3:D_6$
Order: \(19440\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $\langle(1,5,7,6,3,9)(2,4,8)(10,14,13), (2,9,7), (4,6)(5,8)(7,9), (3,5,8), (1,9,5,6,7,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $A_5\times S_3\wr S_3$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \)
$\operatorname{Aut}(H)$ $\He_3.(C_6\times S_3).S_5$
$W$$A_5\times C_3^3:D_6$, of order \(19440\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$A_5\times C_3^3:D_6$
Normal closure:$A_5\times S_3\wr S_3$
Core:$C_3^2:S_3\times A_5$
Minimal over-subgroups:$A_5\times S_3\wr S_3$
Maximal under-subgroups:$A_5\times C_3\wr S_3$$A_5\times C_3^3:C_6$$A_5\times C_3^3:S_3$$\GL(2,4):S_3^2$$\GL(2,4).S_3^2$$A_4\times C_3^3:D_6$$D_5\times C_3^3:D_6$$C_3^2.S_3^3$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$A_5\times S_3\wr S_3$