Properties

Label 77760.bo.2.d1
Order $ 2^{5} \cdot 3^{5} \cdot 5 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:S_3\times S_6$
Order: \(38880\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 5 \)
Index: \(2\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,2,3,4,5)(7,9,8)(10,13,12,15,11,14), (1,6)(2,5)(3,4)(7,14,11)(8,13,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $C_3^2:D_6\times S_6$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, nonsolvable, and rational.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3.S_3\wr C_2.A_6.C_2^2$
$\operatorname{Aut}(H)$ $\AGL(2,3).A_6.C_2^2$
$W$$S_3^2\times S_6$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^2:D_6\times S_6$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_3^2:D_6\times S_6$
Maximal under-subgroups:$C_3^2:S_3\times A_6$$\He_3\times S_6$$\He_3:S_6$$C_3\times S_3\times S_6$$C_3\times S_3\times S_6$$C_3^2:S_3\times S_5$$C_3^4:(S_3\times D_4)$$C_3^2:D_6\times S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^2:D_6\times S_6$