Properties

Label 77760.bo.1.a1
Order $ 2^{6} \cdot 3^{5} \cdot 5 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_6\times S_6$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Index: $1$
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(7,10,15)(8,12,14)(9,11,13), (7,9,8)(10,11,12)(13,14,15), (1,2,3,4,5)(8,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, nonsolvable, and rational.

Ambient group ($G$) information

Description: $C_3^2:D_6\times S_6$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, nonsolvable, and rational.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3.S_3\wr C_2.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_3.S_3\wr C_2.A_6.C_2^2$
$W$$C_3^2:D_6\times S_6$, of order \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^2:D_6\times S_6$
Complements:$C_1$
Maximal under-subgroups:$C_3^2:C_6\times S_6$$C_3^2:(S_3\times S_6)$$C_3^2:D_6\times A_6$$C_3^2:S_3\times S_6$$C_3^2:(S_3\times S_6)$$S_3^2\times S_6$$C_3^2:D_6\times S_5$$C_3^4:(D_4\times D_6)$$C_6^2:D_6^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^2:D_6\times S_6$