Properties

Label 77760.bo.38880.g1
Order $ 2 $
Index $ 2^{5} \cdot 3^{5} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(38880\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 5 \)
Exponent: \(2\)
Generators: $\langle(1,4)(2,3)(7,12)(8,10)(9,11)(14,15)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_3^2:D_6\times S_6$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3.S_3\wr C_2.A_6.C_2^2$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{12}:C_2^4$
Normalizer:$C_{12}:C_2^4$
Normal closure:$C_3^2:D_6\times A_6$
Core:$C_1$
Minimal over-subgroups:$D_5$$C_6$$S_3$$S_3$$S_3$$S_3$$S_3$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$810$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^2:D_6\times S_6$