Subgroup ($H$) information
Description: | $C_2$ |
Order: | \(2\) |
Index: | \(38880\)\(\medspace = 2^{5} \cdot 3^{5} \cdot 5 \) |
Exponent: | \(2\) |
Generators: |
$\langle(1,4)(2,3)(7,12)(8,10)(9,11)(14,15)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Ambient group ($G$) information
Description: | $C_3^2:D_6\times S_6$ |
Order: | \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian, nonsolvable, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3.S_3\wr C_2.A_6.C_2^2$ |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$W$ | $C_1$, of order $1$ |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $810$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | not computed |
Projective image | $C_3^2:D_6\times S_6$ |