Subgroup ($H$) information
Description: | $C_3^4:S_4$ |
Order: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$\langle(1,8,9)(2,6,3)(4,5,7), (1,7,6,8,4,3,9,5,2)(11,12,13)(14,15,16), (4,5,7) \!\cdots\! \rangle$
|
Derived length: | $3$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_6^2.S_3^3$ |
Order: | \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and rational.
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^2.C_3^4.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_3^4.C_6^2.S_3^3$ |
$W$ | $C_6^2.S_3^3$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $2$ |
Projective image | $C_6^2.S_3^3$ |