Properties

Label 7776.gl.4.g1
Order $ 2^{3} \cdot 3^{5} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:S_4$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,8,9)(2,6,3)(4,5,7), (1,7,6,8,4,3,9,5,2)(11,12,13)(14,15,16), (4,5,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2.S_3^3$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_3^4.C_6^2.S_3^3$
$W$$C_6^2.S_3^3$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_6^2.S_3^3$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$S_3\times C_3^3:S_4$$C_6^2.C_3^3.C_2^2$$C_3^4:(C_2\times S_4)$
Maximal under-subgroups:$C_3^4:A_4$$C_3^4:D_4$$C_3^3:S_4$$C_3^3.S_4$$C_3^3:S_4$$C_3^3:S_4$$C_3^3:S_4$$C_3^3:S_4$$C_3^4:S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$C_6^2.S_3^3$