Subgroup ($H$) information
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
Exponent: | \(2\) |
Generators: |
$\langle(1,6)(2,9)(3,8)(10,11)(15,16), (1,2)(3,8)(4,5)(6,9)(12,13)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
Description: | $C_6^2.S_3^3$ |
Order: | \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^2.C_3^4.C_2^3$ |
$\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_2^4$ | |||||||
Normalizer: | $C_2^4$ | |||||||
Normal closure: | $C_3^3:(S_3\times S_4)$ | |||||||
Core: | $C_1$ | |||||||
Minimal over-subgroups: | $D_6$ | $D_6$ | $D_6$ | $D_6$ | $D_6$ | $C_2^3$ | $C_2^3$ | $C_2^3$ |
Maximal under-subgroups: | $C_2$ | $C_2$ | $C_2$ |
Other information
Number of subgroups in this autjugacy class | $486$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_6^2.S_3^3$ |