Properties

Label 7776.gl.12.cd1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:S_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,8,9)(2,6,3)(4,5,7), (4,5,7), (2,5)(3,7)(4,6)(8,9)(11,12)(14,15), (2,3,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2.S_3^3$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_3^3:(C_6\times S_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$W$$C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^3:D_6$
Normal closure:$C_3^4:S_4$
Core:$C_3^3:A_4$
Minimal over-subgroups:$C_3^4:S_4$$C_6^3:S_3$$C_6^2.S_3^2$$C_6^2.S_3^2$
Maximal under-subgroups:$C_3^3:A_4$$C_6^2:C_6$$C_3^2:S_4$$C_3^2.S_4$$C_3^3:S_3$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-2$
Projective image$C_6^2.S_3^3$