Properties

Label 7776.gl.24.c1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:A_4$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(1,8,9)(2,6,3)(4,5,7), (4,5,7), (2,3,6)(4,5,7), (10,12)(11,13), (1,7,6,8,4,3,9,5,2)(11,12,13), (2,6,3)(4,7,5)(10,11)(12,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_6^2.S_3^3$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Quotient group ($Q$) structure

Description: $C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_3\times C_6^2:S_3^2$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$W$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3\times S_3$
Normalizer:$C_6^2.S_3^3$
Complements:$C_2\times D_6$ $C_2\times D_6$ $C_2\times D_6$ $C_2\times D_6$
Minimal over-subgroups:$C_3^4:A_4$$C_3^3:S_4$$(C_3\times C_6^2):C_6$$C_3^3:S_4$$C_6\wr C_3$$C_3^3:S_4$$(C_3\times C_6^2):C_6$$C_3^3:S_4$
Maximal under-subgroups:$C_3\times C_6^2$$C_3^2:A_4$$C_3^2.A_4$$C_3\wr C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$24$
Projective image$C_6^2.S_3^3$