Properties

Label 7776.ga.8.a1
Order $ 2^{2} \cdot 3^{5} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:A_4$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(1,4)(2,3), (10,17,13)(12,14,16), (11,15,18)(12,14,16), (5,6,7)(11,15,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_6^2.C_3^5.D_6.C_2$
$W$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_6^3:S_3^2$
Complements:$C_2^3$ $C_2^3$ $C_2^3$
Minimal over-subgroups:$C_6^3:C_3^2$$S_3\times C_3^3:A_4$$C_3^4:S_4$$C_3^4:S_4$
Maximal under-subgroups:$C_3^2\times C_6^2$$C_3^3:A_4$$C_3^3.A_4$$C_3^3:A_4$$C_3^3:A_4$$C_3^3:A_4$$C_3^3:A_4$$C_3^4:C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-8$
Projective image$C_6^3:S_3^2$