Properties

Label 7776.ga.24.b1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times C_6^2$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,4)(2,3), (10,17,13)(12,14,16), (11,15,18)(12,14,16), (5,6,7)(11,15,18)(12,16,14), (1,2)(3,4), (12,14,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, and abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $S_3\times C_2.\PSL(4,3).C_2$
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_6^3$
Normalizer:$C_6^3:S_3^2$
Complements:$C_2\times D_6$
Minimal over-subgroups:$C_3^4:A_4$$C_3\times C_6^3$$C_3:C_6^3$$C_3^4:D_4$$C_3^4:D_4$
Maximal under-subgroups:$C_3^3\times C_6$$C_3\times C_6^2$$C_3\times C_6^2$$C_3\times C_6^2$$C_3\times C_6^2$$C_3\times C_6^2$$C_3\times C_6^2$$C_3\times C_6^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$24$
Projective image$C_6^3:S_3^2$