Properties

Label 7776.ga.32.a1
Order $ 3^{5} $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:C_3$
Order: \(243\)\(\medspace = 3^{5} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $\langle(10,17,13)(12,14,16), (11,15,18)(12,14,16), (5,6,7)(11,15,18)(12,16,14), (1,4,2)(5,6,7)(10,16,18)(11,17,14)(12,15,13), (12,14,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $3$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_3^4:S_3^3$, of order \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
$W$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_2\times C_3^3:S_3^2$
Normal closure:$C_3^4:A_4$
Core:$C_3^4$
Minimal over-subgroups:$C_3^4:A_4$$C_3^4:C_6$$C_3^4:C_6$$C_3^4:S_3$$C_3^4:S_3$
Maximal under-subgroups:$C_3^4$$C_3\times \He_3$$C_9:C_3^2$$C_3\wr C_3$$C_3\wr C_3$$C_3\wr C_3$$C_3\wr C_3$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$8$
Projective image$C_6^3:S_3^2$