Properties

Label 7776.ga.16.c1
Order $ 2 \cdot 3^{5} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:S_3$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(2,4,3)(5,6,7)(10,16,18)(11,17,14)(12,15,13), (10,17,13)(12,14,16), (11,15,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_3^3:(C_6\times D_6)$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
$W$$C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_2\times C_3^3:S_3^2$
Normal closure:$C_3\times C_6^3:S_3$
Core:$C_3^4$
Minimal over-subgroups:$C_3^4:S_4$$C_3^4:D_6$$C_3^3:S_3^2$
Maximal under-subgroups:$C_3^4:C_3$$C_3^2\wr C_2$$C_3^3:C_6$$D_9:C_3^2$$C_3^3:S_3$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-2$
Projective image$C_6^3:S_3^2$