Properties

Label 768.375391.3.a1
Order $ 2^{8} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(3\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 19 & 8 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 6 & 11 \end{array}\right), \left(\begin{array}{rr} 5 & 9 \\ 6 & 11 \end{array}\right), \left(\begin{array}{rr} 7 & 12 \\ 6 & 13 \end{array}\right), \left(\begin{array}{rr} 7 & 0 \\ 0 & 19 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^6:D_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{15}.\PSL(2,7)\times S_3$
$\operatorname{Aut}(H)$ $C_2^{15}.C_2^4.\PSL(2,7)$
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^5:D_4$
Normal closure:$C_2^6:D_6$
Core:$C_2^3\wr C_2$
Minimal over-subgroups:$C_2^6:D_6$
Maximal under-subgroups:$C_2^3\wr C_2$$C_2^4:D_4$$C_2^5:C_4$$C_2^3\wr C_2$$C_2^3\wr C_2$$C_2^7$$C_2^3\wr C_2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed