Subgroup ($H$) information
Description: | $C_2^3\wr C_2$ |
Order: | \(128\)\(\medspace = 2^{7} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$\left(\begin{array}{rr}
23 & 19 \\
18 & 1
\end{array}\right), \left(\begin{array}{rr}
5 & 0 \\
6 & 11
\end{array}\right), \left(\begin{array}{rr}
7 & 0 \\
0 & 19
\end{array}\right), \left(\begin{array}{rr}
7 & 12 \\
6 & 13
\end{array}\right)$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
Description: | $C_2^6:D_6$ |
Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^{15}.\PSL(2,7)\times S_3$ |
$\operatorname{Aut}(H)$ | $C_2^{12}.\GL(3,2)$, of order \(688128\)\(\medspace = 2^{15} \cdot 3 \cdot 7 \) |
$\card{W}$ | \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Centralizer: | $C_2^4$ | ||
Normalizer: | $C_2^5:D_4$ | ||
Normal closure: | $C_2^6:S_3$ | ||
Core: | $C_2^6$ | ||
Minimal over-subgroups: | $C_2^6:S_3$ | $C_2^5:D_4$ | |
Maximal under-subgroups: | $C_2^6$ | $C_2^3:D_4$ | $C_2^4:C_4$ |
Other information
Number of subgroups in this autjugacy class | $3$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | not computed |