Properties

Label 768.375391.6.g1
Order $ 2^{7} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\wr C_2$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 23 & 19 \\ 18 & 1 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 6 & 11 \end{array}\right), \left(\begin{array}{rr} 7 & 0 \\ 0 & 19 \end{array}\right), \left(\begin{array}{rr} 7 & 12 \\ 6 & 13 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^6:D_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{15}.\PSL(2,7)\times S_3$
$\operatorname{Aut}(H)$ $C_2^{12}.\GL(3,2)$, of order \(688128\)\(\medspace = 2^{15} \cdot 3 \cdot 7 \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^5:D_4$
Normal closure:$C_2^6:S_3$
Core:$C_2^6$
Minimal over-subgroups:$C_2^6:S_3$$C_2^5:D_4$
Maximal under-subgroups:$C_2^6$$C_2^3:D_4$$C_2^4:C_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed