Subgroup ($H$) information
Description: | $C_4^2\times C_8$ |
Order: | \(128\)\(\medspace = 2^{7} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$\left(\begin{array}{rr}
21 & 0 \\
0 & 21
\end{array}\right), \left(\begin{array}{rr}
9 & 24 \\
0 & 25
\end{array}\right), \left(\begin{array}{rr}
9 & 16 \\
24 & 25
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), a semidirect factor, abelian (hence metabelian and an A-group), and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
Description: | $C_4^3.D_6$ |
Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $S_3$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4^2:C_3.C_2^5$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\operatorname{Aut}(H)$ | $C_2^8.C_4^2:S_4$, of order \(98304\)\(\medspace = 2^{15} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(32\)\(\medspace = 2^{5} \) |
$W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
Möbius function | $3$ |
Projective image | $C_4^2:S_3$ |