Subgroup ($H$) information
| Description: | $S_3$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Index: | \(128\)\(\medspace = 2^{7} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rr}
27 & 24 \\
31 & 5
\end{array}\right), \left(\begin{array}{rr}
19 & 5 \\
7 & 12
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Ambient group ($G$) information
| Description: | $C_4^3.D_6$ |
| Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_4^2:C_3.C_2^5$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\operatorname{res}(S)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
| Centralizer: | $C_8$ | |
| Normalizer: | $S_3\times C_8$ | |
| Normal closure: | $C_4^2:S_3$ | |
| Core: | $C_1$ | |
| Minimal over-subgroups: | $S_4$ | $D_6$ |
| Maximal under-subgroups: | $C_3$ | $C_2$ |
| Autjugate subgroups: | 768.1085374.128.b1.a1 |
Other information
| Number of subgroups in this conjugacy class | $16$ |
| Möbius function | $0$ |
| Projective image | $C_4^3.D_6$ |