Subgroup ($H$) information
Description: | $D_5$ |
Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
Index: | \(75\)\(\medspace = 3 \cdot 5^{2} \) |
Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
Generators: |
$a^{3}, cd^{4}$
|
Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_5^3:C_6$ |
Order: | \(750\)\(\medspace = 2 \cdot 3 \cdot 5^{3} \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_5\times F_{25}:C_2$, of order \(24000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \) |
$\operatorname{Aut}(H)$ | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
$\operatorname{res}(S)$ | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $75$ |
Möbius function | $0$ |
Projective image | $C_5^3:C_6$ |