Subgroup ($H$) information
| Description: | $C_5^2$ |
| Order: | \(25\)\(\medspace = 5^{2} \) |
| Index: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Exponent: | \(5\) |
| Generators: |
$c, d$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_5^3:C_6$ |
| Order: | \(750\)\(\medspace = 2 \cdot 3 \cdot 5^{3} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_3\times D_5$ |
| Order: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Automorphism Group: | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
| Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_5\times F_{25}:C_2$, of order \(24000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \) |
| $\operatorname{Aut}(H)$ | $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_{24}:C_2$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(500\)\(\medspace = 2^{2} \cdot 5^{3} \) |
| $W$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
| Centralizer: | $C_5^3$ | ||
| Normalizer: | $C_5^3:C_6$ | ||
| Complements: | $C_3\times D_5$ | ||
| Minimal over-subgroups: | $C_5^3$ | $C_5^2:C_3$ | $C_5:D_5$ |
| Maximal under-subgroups: | $C_5$ | $C_5$ |
Other information
| Möbius function | $-5$ |
| Projective image | $C_5^3:C_6$ |