Properties

Label 740.11.4.a1.a1
Order $ 5 \cdot 37 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{185}$
Order: \(185\)\(\medspace = 5 \cdot 37 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(185\)\(\medspace = 5 \cdot 37 \)
Generators: $c^{111}, c^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), the Fitting subgroup (hence nilpotent, solvable, supersolvable, and monomial), the socle, a semidirect factor, cyclic (hence abelian, elementary ($p = 5,37$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $D_5\times D_{37}$
Order: \(740\)\(\medspace = 2^{2} \cdot 5 \cdot 37 \)
Exponent: \(370\)\(\medspace = 2 \cdot 5 \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{185}.C_9.C_4^2$
$\operatorname{Aut}(H)$ $C_4\times C_{36}$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\times C_{36}$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(185\)\(\medspace = 5 \cdot 37 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{185}$
Normalizer:$D_5\times D_{37}$
Complements:$C_2^2$
Minimal over-subgroups:$D_5\times C_{37}$$C_5\times D_{37}$$D_{185}$
Maximal under-subgroups:$C_{37}$$C_5$

Other information

Möbius function$2$
Projective image$D_5\times D_{37}$