Properties

Label 740.11.2.b1.a1
Order $ 2 \cdot 5 \cdot 37 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_{37}$
Order: \(370\)\(\medspace = 2 \cdot 5 \cdot 37 \)
Index: \(2\)
Exponent: \(370\)\(\medspace = 2 \cdot 5 \cdot 37 \)
Generators: $ab, c^{111}, c^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_5\times D_{37}$
Order: \(740\)\(\medspace = 2^{2} \cdot 5 \cdot 37 \)
Exponent: \(370\)\(\medspace = 2 \cdot 5 \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{185}.C_9.C_4^2$
$\operatorname{Aut}(H)$ $C_4\times F_{37}$, of order \(5328\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 37 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\times F_{37}$, of order \(5328\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 37 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(5\)
$W$$D_{74}$, of order \(148\)\(\medspace = 2^{2} \cdot 37 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$D_5\times D_{37}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$D_5\times D_{37}$
Maximal under-subgroups:$C_{185}$$D_{37}$$C_{10}$

Other information

Möbius function$-1$
Projective image$D_5\times D_{37}$