Subgroup ($H$) information
| Description: | $C_{11}^2$ |
| Order: | \(121\)\(\medspace = 11^{2} \) |
| Index: | \(605\)\(\medspace = 5 \cdot 11^{2} \) |
| Exponent: | \(11\) |
| Generators: |
$\left(\begin{array}{rrrr}
3 & 8 & 7 & 6 \\
6 & 3 & 10 & 7 \\
1 & 4 & 10 & 3 \\
3 & 1 & 5 & 10
\end{array}\right), \left(\begin{array}{rrrr}
7 & 3 & 8 & 2 \\
4 & 0 & 8 & 4 \\
9 & 9 & 4 & 8 \\
6 & 10 & 7 & 4
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_{11}^3:(C_{11}:C_5)$ |
| Order: | \(73205\)\(\medspace = 5 \cdot 11^{4} \) |
| Exponent: | \(55\)\(\medspace = 5 \cdot 11 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $\He_{11}:C_{10}^2$, of order \(133100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{3} \) |
| $\operatorname{Aut}(H)$ | $\GL(2,11)$, of order \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \) |
| $\card{W}$ | \(11\) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $55$ |
| Möbius function | not computed |
| Projective image | not computed |