Properties

Label 73205.j.605.d1.b1
Order $ 11^{2} $
Index $ 5 \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2$
Order: \(121\)\(\medspace = 11^{2} \)
Index: \(605\)\(\medspace = 5 \cdot 11^{2} \)
Exponent: \(11\)
Generators: $\left(\begin{array}{rrrr} 3 & 8 & 7 & 6 \\ 6 & 3 & 10 & 7 \\ 1 & 4 & 10 & 3 \\ 3 & 1 & 5 & 10 \end{array}\right), \left(\begin{array}{rrrr} 7 & 3 & 8 & 2 \\ 4 & 0 & 8 & 4 \\ 9 & 9 & 4 & 8 \\ 6 & 10 & 7 & 4 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{11}^3:(C_{11}:C_5)$
Order: \(73205\)\(\medspace = 5 \cdot 11^{4} \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}:C_{10}^2$, of order \(133100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $\GL(2,11)$, of order \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
$\card{W}$\(11\)

Related subgroups

Centralizer:$C_{11}^2$
Normalizer:$\He_{11}$
Normal closure:$C_{11}^3.C_{11}$
Core:$C_{11}$
Minimal over-subgroups:$\He_{11}$
Maximal under-subgroups:$C_{11}$$C_{11}$
Autjugate subgroups:73205.j.605.d1.a1

Other information

Number of subgroups in this conjugacy class$55$
Möbius function not computed
Projective image not computed