Properties

Label 73205.j
Order \( 5 \cdot 11^{4} \)
Exponent \( 5 \cdot 11 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 5 \)
$\card{Z(G)}$ \( 11 \)
$\card{\Aut(G)}$ \( 2^{2} \cdot 5^{2} \cdot 11^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \cdot 5 \)
Perm deg. $121$
Trans deg. $121$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 121 | (1,2,11,5,36,113,39,106,46,47,7)(3,20,48,73,29,105,117,114,121,69,24)(4,27,100,60,58,80,111,59,92,95,32)(6,15,62,40,90,67,12,63,42,74,45)(8,50,103,28,86,101,56,79,52,97,26)(9,53,33,10,19,21,43,31,38,116,54)(13,41,83,99,107,98,25,14,23,93,71)(16,81,65,118,44,77,87,88,89,119,66)(17,55,85,72,51,78,120,104,108,112,34)(18,82,64,61,115,110,35,102,109,30,22)(37,84,76,70,94,68,96,75,57,91,49), (1,3,7,31,29,43,13,68,48,34,8)(2,12,64,119,82,75,65,96,120,79,16)(4,28,32,73,98,50,77,51,10,26,33)(5,37,115,71,56,20,6,23,45,36,41)(9,11,60,94,109,101,27,86,85,80,55)(14,74,25,81,17,63,19,39,70,67,76)(15,66,59,72,111,35,104,110,103,121,78)(18,88,58,21,30,107,91,112,102,108,89)(22,95,49,114,93,44,57,118,90,84,40)(24,47,69,42,87,106,92,116,99,113,83)(38,105,97,53,52,46,62,54,61,100,117), (1,4,29,106,83,99,97,47,71,45,6,31,41,63,76,70,24,74,49,118,44,36,84,16,82,64,14,65,30,108,112,90,18,78,111,59,75,104,60,86,101,89,80,50,33,10,35,28,54,105,117,85,53,48,7)(2,13,69,26,95,107,42,5,38,79,15,37,25,3,21,94,81,40,113,121,77,22,96,23,11,61,120,88,67,98,34,58,110,57,62,92,103,55,119,68,56,9,32,102,87,19,73,52,72,115,114,46,43,27,17)(8,51,66,12,39,116,100,109,91,93,20), (1,5,39,74,56,31,60,118,62,57,9)(2,14,48,111,115,72,13,70,96,91,18)(3,22,59,32,100,53,77,35,49,7,21)(4,30,45,11,23,58,10,43,116,47,34)(6,40,12,65,114,36,54,108,87,102,46)(8,29,61,85,16,83,121,113,120,101,52)(15,75,71,33,95,26,37,64,110,109,80)(17,27,42,44,88,66,104,107,90,106,86)(19,24,50,82,68,119,73,99,25,93,84)(20,41,92,97,78,76,98,67,103,117,69)(28,94,89,63,105,79,38,81,112,55,51), (1,6,44,112,101,117,99,70,64,59,10)(2,15,77,34,56,114,107,94,61,92,19)(3,23,57,102,27,38,113,67,119,72,26)(4,31,36,90,89,85,97,24,14,75,35)(5,40,88,55,52,69,25,96,110,32,43)(7,45,118,108,86,105,83,76,82,111,33)(8,20,93,91,109,100,116,39,12,66,51)(9,46,42,81,120,103,73,13,37,22,58)(11,62,87,17,79,121,98,68,115,95,21)(16,78,50,48,71,49,30,60,54,106,63)(18,80,53,47,74,65,104,28,29,41,84) >;
 
Copy content gap:G := Group( (1,2,11,5,36,113,39,106,46,47,7)(3,20,48,73,29,105,117,114,121,69,24)(4,27,100,60,58,80,111,59,92,95,32)(6,15,62,40,90,67,12,63,42,74,45)(8,50,103,28,86,101,56,79,52,97,26)(9,53,33,10,19,21,43,31,38,116,54)(13,41,83,99,107,98,25,14,23,93,71)(16,81,65,118,44,77,87,88,89,119,66)(17,55,85,72,51,78,120,104,108,112,34)(18,82,64,61,115,110,35,102,109,30,22)(37,84,76,70,94,68,96,75,57,91,49), (1,3,7,31,29,43,13,68,48,34,8)(2,12,64,119,82,75,65,96,120,79,16)(4,28,32,73,98,50,77,51,10,26,33)(5,37,115,71,56,20,6,23,45,36,41)(9,11,60,94,109,101,27,86,85,80,55)(14,74,25,81,17,63,19,39,70,67,76)(15,66,59,72,111,35,104,110,103,121,78)(18,88,58,21,30,107,91,112,102,108,89)(22,95,49,114,93,44,57,118,90,84,40)(24,47,69,42,87,106,92,116,99,113,83)(38,105,97,53,52,46,62,54,61,100,117), (1,4,29,106,83,99,97,47,71,45,6,31,41,63,76,70,24,74,49,118,44,36,84,16,82,64,14,65,30,108,112,90,18,78,111,59,75,104,60,86,101,89,80,50,33,10,35,28,54,105,117,85,53,48,7)(2,13,69,26,95,107,42,5,38,79,15,37,25,3,21,94,81,40,113,121,77,22,96,23,11,61,120,88,67,98,34,58,110,57,62,92,103,55,119,68,56,9,32,102,87,19,73,52,72,115,114,46,43,27,17)(8,51,66,12,39,116,100,109,91,93,20), (1,5,39,74,56,31,60,118,62,57,9)(2,14,48,111,115,72,13,70,96,91,18)(3,22,59,32,100,53,77,35,49,7,21)(4,30,45,11,23,58,10,43,116,47,34)(6,40,12,65,114,36,54,108,87,102,46)(8,29,61,85,16,83,121,113,120,101,52)(15,75,71,33,95,26,37,64,110,109,80)(17,27,42,44,88,66,104,107,90,106,86)(19,24,50,82,68,119,73,99,25,93,84)(20,41,92,97,78,76,98,67,103,117,69)(28,94,89,63,105,79,38,81,112,55,51), (1,6,44,112,101,117,99,70,64,59,10)(2,15,77,34,56,114,107,94,61,92,19)(3,23,57,102,27,38,113,67,119,72,26)(4,31,36,90,89,85,97,24,14,75,35)(5,40,88,55,52,69,25,96,110,32,43)(7,45,118,108,86,105,83,76,82,111,33)(8,20,93,91,109,100,116,39,12,66,51)(9,46,42,81,120,103,73,13,37,22,58)(11,62,87,17,79,121,98,68,115,95,21)(16,78,50,48,71,49,30,60,54,106,63)(18,80,53,47,74,65,104,28,29,41,84) );
 
Copy content sage:G = PermutationGroup(['(1,2,11,5,36,113,39,106,46,47,7)(3,20,48,73,29,105,117,114,121,69,24)(4,27,100,60,58,80,111,59,92,95,32)(6,15,62,40,90,67,12,63,42,74,45)(8,50,103,28,86,101,56,79,52,97,26)(9,53,33,10,19,21,43,31,38,116,54)(13,41,83,99,107,98,25,14,23,93,71)(16,81,65,118,44,77,87,88,89,119,66)(17,55,85,72,51,78,120,104,108,112,34)(18,82,64,61,115,110,35,102,109,30,22)(37,84,76,70,94,68,96,75,57,91,49)', '(1,3,7,31,29,43,13,68,48,34,8)(2,12,64,119,82,75,65,96,120,79,16)(4,28,32,73,98,50,77,51,10,26,33)(5,37,115,71,56,20,6,23,45,36,41)(9,11,60,94,109,101,27,86,85,80,55)(14,74,25,81,17,63,19,39,70,67,76)(15,66,59,72,111,35,104,110,103,121,78)(18,88,58,21,30,107,91,112,102,108,89)(22,95,49,114,93,44,57,118,90,84,40)(24,47,69,42,87,106,92,116,99,113,83)(38,105,97,53,52,46,62,54,61,100,117)', '(1,4,29,106,83,99,97,47,71,45,6,31,41,63,76,70,24,74,49,118,44,36,84,16,82,64,14,65,30,108,112,90,18,78,111,59,75,104,60,86,101,89,80,50,33,10,35,28,54,105,117,85,53,48,7)(2,13,69,26,95,107,42,5,38,79,15,37,25,3,21,94,81,40,113,121,77,22,96,23,11,61,120,88,67,98,34,58,110,57,62,92,103,55,119,68,56,9,32,102,87,19,73,52,72,115,114,46,43,27,17)(8,51,66,12,39,116,100,109,91,93,20)', '(1,5,39,74,56,31,60,118,62,57,9)(2,14,48,111,115,72,13,70,96,91,18)(3,22,59,32,100,53,77,35,49,7,21)(4,30,45,11,23,58,10,43,116,47,34)(6,40,12,65,114,36,54,108,87,102,46)(8,29,61,85,16,83,121,113,120,101,52)(15,75,71,33,95,26,37,64,110,109,80)(17,27,42,44,88,66,104,107,90,106,86)(19,24,50,82,68,119,73,99,25,93,84)(20,41,92,97,78,76,98,67,103,117,69)(28,94,89,63,105,79,38,81,112,55,51)', '(1,6,44,112,101,117,99,70,64,59,10)(2,15,77,34,56,114,107,94,61,92,19)(3,23,57,102,27,38,113,67,119,72,26)(4,31,36,90,89,85,97,24,14,75,35)(5,40,88,55,52,69,25,96,110,32,43)(7,45,118,108,86,105,83,76,82,111,33)(8,20,93,91,109,100,116,39,12,66,51)(9,46,42,81,120,103,73,13,37,22,58)(11,62,87,17,79,121,98,68,115,95,21)(16,78,50,48,71,49,30,60,54,106,63)(18,80,53,47,74,65,104,28,29,41,84)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(31001119675467092033270877476939999,73205)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5;
 

Group information

Description:$C_{11}^3:(C_{11}:C_5)$
Order: \(73205\)\(\medspace = 5 \cdot 11^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$\He_{11}:C_{10}^2$, of order \(133100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_5$, $C_{11}$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and supersolvable (hence solvable and monomial).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 5 11 55
Elements 1 5324 14640 53240 73205
Conjugacy classes   1 4 56 40 101
Divisions 1 1 8 1 11
Autjugacy classes 1 4 7 4 16

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 4 5 10 11 50 55 110 440 550
Irr. complex chars.   5 0 24 0 50 0 22 0 0 0 101
Irr. rational chars. 1 1 0 2 0 2 0 2 1 2 11

Minimal presentations

Permutation degree:$121$
Transitive degree:$121$
Rank: $2$
Inequivalent generating pairs: $31944$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 11 22 110
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e \mid b^{11}=c^{11}=d^{11}=e^{11}=[a,e]=[b,e]=[c,d]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([5, -5, -11, -11, -11, -11, 66550, 496851, 107252, 121777, 435603, 242008]); a,b,c,d,e := Explode([G.1, G.2, G.3, G.4, G.5]); AssignNames(~G, ["a", "b", "c", "d", "e"]);
 
Copy content gap:G := PcGroupCode(31001119675467092033270877476939999,73205); a := G.1; b := G.2; c := G.3; d := G.4; e := G.5;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(31001119675467092033270877476939999,73205)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(31001119675467092033270877476939999,73205)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5;
 
Permutation group:Degree $121$ $\langle(1,2,11,5,36,113,39,106,46,47,7)(3,20,48,73,29,105,117,114,121,69,24)(4,27,100,60,58,80,111,59,92,95,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 121 | (1,2,11,5,36,113,39,106,46,47,7)(3,20,48,73,29,105,117,114,121,69,24)(4,27,100,60,58,80,111,59,92,95,32)(6,15,62,40,90,67,12,63,42,74,45)(8,50,103,28,86,101,56,79,52,97,26)(9,53,33,10,19,21,43,31,38,116,54)(13,41,83,99,107,98,25,14,23,93,71)(16,81,65,118,44,77,87,88,89,119,66)(17,55,85,72,51,78,120,104,108,112,34)(18,82,64,61,115,110,35,102,109,30,22)(37,84,76,70,94,68,96,75,57,91,49), (1,3,7,31,29,43,13,68,48,34,8)(2,12,64,119,82,75,65,96,120,79,16)(4,28,32,73,98,50,77,51,10,26,33)(5,37,115,71,56,20,6,23,45,36,41)(9,11,60,94,109,101,27,86,85,80,55)(14,74,25,81,17,63,19,39,70,67,76)(15,66,59,72,111,35,104,110,103,121,78)(18,88,58,21,30,107,91,112,102,108,89)(22,95,49,114,93,44,57,118,90,84,40)(24,47,69,42,87,106,92,116,99,113,83)(38,105,97,53,52,46,62,54,61,100,117), (1,4,29,106,83,99,97,47,71,45,6,31,41,63,76,70,24,74,49,118,44,36,84,16,82,64,14,65,30,108,112,90,18,78,111,59,75,104,60,86,101,89,80,50,33,10,35,28,54,105,117,85,53,48,7)(2,13,69,26,95,107,42,5,38,79,15,37,25,3,21,94,81,40,113,121,77,22,96,23,11,61,120,88,67,98,34,58,110,57,62,92,103,55,119,68,56,9,32,102,87,19,73,52,72,115,114,46,43,27,17)(8,51,66,12,39,116,100,109,91,93,20), (1,5,39,74,56,31,60,118,62,57,9)(2,14,48,111,115,72,13,70,96,91,18)(3,22,59,32,100,53,77,35,49,7,21)(4,30,45,11,23,58,10,43,116,47,34)(6,40,12,65,114,36,54,108,87,102,46)(8,29,61,85,16,83,121,113,120,101,52)(15,75,71,33,95,26,37,64,110,109,80)(17,27,42,44,88,66,104,107,90,106,86)(19,24,50,82,68,119,73,99,25,93,84)(20,41,92,97,78,76,98,67,103,117,69)(28,94,89,63,105,79,38,81,112,55,51), (1,6,44,112,101,117,99,70,64,59,10)(2,15,77,34,56,114,107,94,61,92,19)(3,23,57,102,27,38,113,67,119,72,26)(4,31,36,90,89,85,97,24,14,75,35)(5,40,88,55,52,69,25,96,110,32,43)(7,45,118,108,86,105,83,76,82,111,33)(8,20,93,91,109,100,116,39,12,66,51)(9,46,42,81,120,103,73,13,37,22,58)(11,62,87,17,79,121,98,68,115,95,21)(16,78,50,48,71,49,30,60,54,106,63)(18,80,53,47,74,65,104,28,29,41,84) >;
 
Copy content gap:G := Group( (1,2,11,5,36,113,39,106,46,47,7)(3,20,48,73,29,105,117,114,121,69,24)(4,27,100,60,58,80,111,59,92,95,32)(6,15,62,40,90,67,12,63,42,74,45)(8,50,103,28,86,101,56,79,52,97,26)(9,53,33,10,19,21,43,31,38,116,54)(13,41,83,99,107,98,25,14,23,93,71)(16,81,65,118,44,77,87,88,89,119,66)(17,55,85,72,51,78,120,104,108,112,34)(18,82,64,61,115,110,35,102,109,30,22)(37,84,76,70,94,68,96,75,57,91,49), (1,3,7,31,29,43,13,68,48,34,8)(2,12,64,119,82,75,65,96,120,79,16)(4,28,32,73,98,50,77,51,10,26,33)(5,37,115,71,56,20,6,23,45,36,41)(9,11,60,94,109,101,27,86,85,80,55)(14,74,25,81,17,63,19,39,70,67,76)(15,66,59,72,111,35,104,110,103,121,78)(18,88,58,21,30,107,91,112,102,108,89)(22,95,49,114,93,44,57,118,90,84,40)(24,47,69,42,87,106,92,116,99,113,83)(38,105,97,53,52,46,62,54,61,100,117), (1,4,29,106,83,99,97,47,71,45,6,31,41,63,76,70,24,74,49,118,44,36,84,16,82,64,14,65,30,108,112,90,18,78,111,59,75,104,60,86,101,89,80,50,33,10,35,28,54,105,117,85,53,48,7)(2,13,69,26,95,107,42,5,38,79,15,37,25,3,21,94,81,40,113,121,77,22,96,23,11,61,120,88,67,98,34,58,110,57,62,92,103,55,119,68,56,9,32,102,87,19,73,52,72,115,114,46,43,27,17)(8,51,66,12,39,116,100,109,91,93,20), (1,5,39,74,56,31,60,118,62,57,9)(2,14,48,111,115,72,13,70,96,91,18)(3,22,59,32,100,53,77,35,49,7,21)(4,30,45,11,23,58,10,43,116,47,34)(6,40,12,65,114,36,54,108,87,102,46)(8,29,61,85,16,83,121,113,120,101,52)(15,75,71,33,95,26,37,64,110,109,80)(17,27,42,44,88,66,104,107,90,106,86)(19,24,50,82,68,119,73,99,25,93,84)(20,41,92,97,78,76,98,67,103,117,69)(28,94,89,63,105,79,38,81,112,55,51), (1,6,44,112,101,117,99,70,64,59,10)(2,15,77,34,56,114,107,94,61,92,19)(3,23,57,102,27,38,113,67,119,72,26)(4,31,36,90,89,85,97,24,14,75,35)(5,40,88,55,52,69,25,96,110,32,43)(7,45,118,108,86,105,83,76,82,111,33)(8,20,93,91,109,100,116,39,12,66,51)(9,46,42,81,120,103,73,13,37,22,58)(11,62,87,17,79,121,98,68,115,95,21)(16,78,50,48,71,49,30,60,54,106,63)(18,80,53,47,74,65,104,28,29,41,84) );
 
Copy content sage:G = PermutationGroup(['(1,2,11,5,36,113,39,106,46,47,7)(3,20,48,73,29,105,117,114,121,69,24)(4,27,100,60,58,80,111,59,92,95,32)(6,15,62,40,90,67,12,63,42,74,45)(8,50,103,28,86,101,56,79,52,97,26)(9,53,33,10,19,21,43,31,38,116,54)(13,41,83,99,107,98,25,14,23,93,71)(16,81,65,118,44,77,87,88,89,119,66)(17,55,85,72,51,78,120,104,108,112,34)(18,82,64,61,115,110,35,102,109,30,22)(37,84,76,70,94,68,96,75,57,91,49)', '(1,3,7,31,29,43,13,68,48,34,8)(2,12,64,119,82,75,65,96,120,79,16)(4,28,32,73,98,50,77,51,10,26,33)(5,37,115,71,56,20,6,23,45,36,41)(9,11,60,94,109,101,27,86,85,80,55)(14,74,25,81,17,63,19,39,70,67,76)(15,66,59,72,111,35,104,110,103,121,78)(18,88,58,21,30,107,91,112,102,108,89)(22,95,49,114,93,44,57,118,90,84,40)(24,47,69,42,87,106,92,116,99,113,83)(38,105,97,53,52,46,62,54,61,100,117)', '(1,4,29,106,83,99,97,47,71,45,6,31,41,63,76,70,24,74,49,118,44,36,84,16,82,64,14,65,30,108,112,90,18,78,111,59,75,104,60,86,101,89,80,50,33,10,35,28,54,105,117,85,53,48,7)(2,13,69,26,95,107,42,5,38,79,15,37,25,3,21,94,81,40,113,121,77,22,96,23,11,61,120,88,67,98,34,58,110,57,62,92,103,55,119,68,56,9,32,102,87,19,73,52,72,115,114,46,43,27,17)(8,51,66,12,39,116,100,109,91,93,20)', '(1,5,39,74,56,31,60,118,62,57,9)(2,14,48,111,115,72,13,70,96,91,18)(3,22,59,32,100,53,77,35,49,7,21)(4,30,45,11,23,58,10,43,116,47,34)(6,40,12,65,114,36,54,108,87,102,46)(8,29,61,85,16,83,121,113,120,101,52)(15,75,71,33,95,26,37,64,110,109,80)(17,27,42,44,88,66,104,107,90,106,86)(19,24,50,82,68,119,73,99,25,93,84)(20,41,92,97,78,76,98,67,103,117,69)(28,94,89,63,105,79,38,81,112,55,51)', '(1,6,44,112,101,117,99,70,64,59,10)(2,15,77,34,56,114,107,94,61,92,19)(3,23,57,102,27,38,113,67,119,72,26)(4,31,36,90,89,85,97,24,14,75,35)(5,40,88,55,52,69,25,96,110,32,43)(7,45,118,108,86,105,83,76,82,111,33)(8,20,93,91,109,100,116,39,12,66,51)(9,46,42,81,120,103,73,13,37,22,58)(11,62,87,17,79,121,98,68,115,95,21)(16,78,50,48,71,49,30,60,54,106,63)(18,80,53,47,74,65,104,28,29,41,84)'])
 
Matrix group:$\left\langle \left(\begin{array}{rrrr} 3 & 0 & 10 & 10 \\ 3 & 0 & 3 & 10 \\ 3 & 8 & 2 & 0 \\ 1 & 3 & 8 & 10 \end{array}\right), \left(\begin{array}{rrrr} 10 & 3 & 2 & 1 \\ 9 & 5 & 5 & 7 \\ 5 & 4 & 1 & 1 \\ 8 & 9 & 1 & 7 \end{array}\right), \left(\begin{array}{rrrr} 0 & 3 & 6 & 0 \\ 10 & 7 & 3 & 6 \\ 4 & 3 & 6 & 8 \\ 8 & 4 & 1 & 2 \end{array}\right), \left(\begin{array}{rrrr} 0 & 4 & 7 & 5 \\ 2 & 8 & 0 & 3 \\ 1 & 8 & 7 & 7 \\ 2 & 2 & 9 & 0 \end{array}\right), \left(\begin{array}{rrrr} 6 & 9 & 1 & 4 \\ 4 & 6 & 3 & 1 \\ 8 & 10 & 7 & 2 \\ 2 & 8 & 7 & 7 \end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{11})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 4, GF(11) | [[3, 0, 10, 10, 3, 0, 3, 10, 3, 8, 2, 0, 1, 3, 8, 10], [10, 3, 2, 1, 9, 5, 5, 7, 5, 4, 1, 1, 8, 9, 1, 7], [0, 3, 6, 0, 10, 7, 3, 6, 4, 3, 6, 8, 8, 4, 1, 2], [0, 4, 7, 5, 2, 8, 0, 3, 1, 8, 7, 7, 2, 2, 9, 0], [6, 9, 1, 4, 4, 6, 3, 1, 8, 10, 7, 2, 2, 8, 7, 7]] >;
 
Copy content gap:G := Group([[[ Z(11)^8, 0*Z(11), Z(11)^5, Z(11)^5 ], [ Z(11)^8, 0*Z(11), Z(11)^8, Z(11)^5 ], [ Z(11)^8, Z(11)^3, Z(11), 0*Z(11) ], [ Z(11)^0, Z(11)^8, Z(11)^3, Z(11)^5 ]], [[ Z(11)^5, Z(11)^8, Z(11), Z(11)^0 ], [ Z(11)^6, Z(11)^4, Z(11)^4, Z(11)^7 ], [ Z(11)^4, Z(11)^2, Z(11)^0, Z(11)^0 ], [ Z(11)^3, Z(11)^6, Z(11)^0, Z(11)^7 ]], [[ 0*Z(11), Z(11)^8, Z(11)^9, 0*Z(11) ], [ Z(11)^5, Z(11)^7, Z(11)^8, Z(11)^9 ], [ Z(11)^2, Z(11)^8, Z(11)^9, Z(11)^3 ], [ Z(11)^3, Z(11)^2, Z(11)^0, Z(11) ]], [[ 0*Z(11), Z(11)^2, Z(11)^7, Z(11)^4 ], [ Z(11), Z(11)^3, 0*Z(11), Z(11)^8 ], [ Z(11)^0, Z(11)^3, Z(11)^7, Z(11)^7 ], [ Z(11), Z(11), Z(11)^6, 0*Z(11) ]], [[ Z(11)^9, Z(11)^6, Z(11)^0, Z(11)^2 ], [ Z(11)^2, Z(11)^9, Z(11)^8, Z(11)^0 ], [ Z(11)^3, Z(11)^5, Z(11)^7, Z(11) ], [ Z(11), Z(11)^3, Z(11)^7, Z(11)^7 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(11), 4, 4) G = MatrixGroup([MS([[3, 0, 10, 10], [3, 0, 3, 10], [3, 8, 2, 0], [1, 3, 8, 10]]), MS([[10, 3, 2, 1], [9, 5, 5, 7], [5, 4, 1, 1], [8, 9, 1, 7]]), MS([[0, 3, 6, 0], [10, 7, 3, 6], [4, 3, 6, 8], [8, 4, 1, 2]]), MS([[0, 4, 7, 5], [2, 8, 0, 3], [1, 8, 7, 7], [2, 2, 9, 0]]), MS([[6, 9, 1, 4], [4, 6, 3, 1], [8, 10, 7, 2], [2, 8, 7, 7]])])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $C_{11}^3$ $\,\rtimes\,$ $(C_{11}:C_5)$ $\He_{11}$ $\,\rtimes\,$ $(C_{11}:C_5)$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_{11}$ . $(\He_{11}:C_5)$ $C_{11}^2$ . $(C_{11}^2:C_5)$ more information
Aut. group: $\Aut(C_4\wr C_5.C_2^3)$

Elements of the group are displayed as matrices in $\GL_{4}(\F_{11})$.

Homology

Abelianization: $C_{5} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 5154 subgroups in 34 conjugacy classes, 7 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{11}$ $G/Z \simeq$ $\He_{11}:C_5$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{11}^3.C_{11}$ $G/G' \simeq$ $C_5$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_{11}^2$ $G/\Phi \simeq$ $C_{11}^2:C_5$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{11}^3.C_{11}$ $G/\operatorname{Fit} \simeq$ $C_5$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{11}^3:(C_{11}:C_5)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{11}$ $G/\operatorname{soc} \simeq$ $\He_{11}:C_5$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}^3.C_{11}$

Subgroup diagram and profile

Series

Derived series $C_{11}^3:(C_{11}:C_5)$ $\rhd$ $C_{11}^3.C_{11}$ $\rhd$ $C_{11}^2$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_{11}^3:(C_{11}:C_5)$ $\rhd$ $C_{11}^3.C_{11}$ $\rhd$ $C_{11}^3$ $\rhd$ $\He_{11}$ $\rhd$ $C_{11}^2$ $\rhd$ $C_{11}$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_{11}^3:(C_{11}:C_5)$ $\rhd$ $C_{11}^3.C_{11}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_{11}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $101 \times 101$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

1A 5A 11A 11B 11C 11D 11E 11F 11G 11H 55A
Size 1 5324 10 110 110 550 550 1210 6050 6050 53240
5 P 1A 5A 11A 11B 11C 11D 11E 11F 11G 11H 55A
11 P 1A 1A 11A 11B 11C 11D 11E 11F 11G 11H 11A
73205.j.1a 1 1 1 1 1 1 1 1 1 1 1
73205.j.1b 4 1 4 4 4 4 4 4 4 4 1
73205.j.5a 10 0 10 1 1 10 10 1 1 1 0
73205.j.5b 10 0 10 10 10 10 10 1 1 1 0
73205.j.5c 50 0 50 5 5 50 50 5 6 6 0
73205.j.5d 50 0 50 5 5 50 50 6 5 5 0
73205.j.11a 110 10 11 11 11 0 0 0 0 0 1
73205.j.11b 440 10 44 44 44 0 0 0 0 0 1
73205.j.55a 110 0 110 0 0 11 11 0 0 0 0
73205.j.55b 550 0 55 11 0 0 0 0 0 0 0
73205.j.55c 550 0 55 0 11 0 0 0 0 0 0