Properties

Label 73205.j.11.a1.a1
Order $ 5 \cdot 11^{3} $
Index $ 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(6655\)\(\medspace = 5 \cdot 11^{3} \)
Index: \(11\)
Exponent: not computed
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 5 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 8 & 0 & 6 & 1 \end{array}\right), \left(\begin{array}{rrrr} 3 & 8 & 7 & 6 \\ 6 & 3 & 10 & 7 \\ 1 & 4 & 10 & 3 \\ 3 & 1 & 5 & 10 \end{array}\right), \left(\begin{array}{rrrr} 1 & 8 & 0 & 6 \\ 5 & 1 & 1 & 0 \\ 0 & 4 & 1 & 3 \\ 8 & 0 & 6 & 1 \end{array}\right), \left(\begin{array}{rrrr} 5 & 0 & 0 & 0 \\ 0 & 9 & 9 & 0 \\ 6 & 0 & 4 & 0 \\ 4 & 2 & 2 & 5 \end{array}\right)$ Copy content Toggle raw display
Derived length: not computed

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_{11}^3:(C_{11}:C_5)$
Order: \(73205\)\(\medspace = 5 \cdot 11^{4} \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}:C_{10}^2$, of order \(133100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{3} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(605\)\(\medspace = 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{11}$
Normalizer:$C_{11}^3:C_5$
Normal closure:$C_{11}^3:(C_{11}:C_5)$
Core:$C_{11}^3$
Minimal over-subgroups:$C_{11}^3:(C_{11}:C_5)$
Maximal under-subgroups:$C_{11}^3$$C_{11}:C_{55}$$C_{11}:C_{55}$$C_{11}^2:C_5$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function not computed
Projective image not computed