Subgroup ($H$) information
| Description: | $C_{10}\times S_4$ |
| Order: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
| Index: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(1,5,2,4,3)(7,9)(8,12)(11,13), (1,3,4,2,5)(6,10)(8,13)(11,12), (1,3,4,2,5) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $S_6:C_{10}$ |
| Order: | \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_4\times S_6:C_2$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $C_2^4.D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $W$ | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $30$ |
| Möbius function | $0$ |
| Projective image | $S_6:C_2$ |