Properties

Label 7200.dx.150.a1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2 \cdot 3 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(6,10)(8,13)(11,12), (8,11)(12,13)(14,15), (6,10)(7,14)(9,15)(11,12), (7,9)(8,12)(11,13), (6,9,14)(7,15,10)(8,11,12)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $S_6:C_{10}$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times S_6:C_2$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{10}\times S_4$
Normal closure:$S_6$
Core:$C_1$
Minimal over-subgroups:$S_6$$C_{10}\times S_4$
Maximal under-subgroups:$C_2\times A_4$$S_4$$S_4$$C_2\times D_4$$D_6$

Other information

Number of subgroups in this conjugacy class$30$
Möbius function$0$
Projective image$S_6:C_{10}$