Properties

Label 714.2.6.a1.a1
Order $ 7 \cdot 17 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{119}$
Order: \(119\)\(\medspace = 7 \cdot 17 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(119\)\(\medspace = 7 \cdot 17 \)
Generators: $b^{85}, b^{7}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, a semidirect factor, cyclic (hence abelian, elementary ($p = 7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{17}\times F_7$
Order: \(714\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 17 \)
Exponent: \(714\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{16}\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(7\)
$W$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{119}$
Normalizer:$C_{17}\times F_7$
Complements:$C_6$
Minimal over-subgroups:$C_7:C_{51}$$D_7\times C_{17}$
Maximal under-subgroups:$C_{17}$$C_7$

Other information

Möbius function$1$
Projective image$F_7$