Properties

Label 714.2.2.a1.a1
Order $ 3 \cdot 7 \cdot 17 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_{51}$
Order: \(357\)\(\medspace = 3 \cdot 7 \cdot 17 \)
Index: \(2\)
Exponent: \(357\)\(\medspace = 3 \cdot 7 \cdot 17 \)
Generators: $a^{2}, b^{7}, b^{85}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Ambient group ($G$) information

Description: $C_{17}\times F_7$
Order: \(714\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 17 \)
Exponent: \(714\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{16}\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_{16}\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{16}\times F_7$, of order \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_{17}$
Normalizer:$C_{17}\times F_7$
Complements:$C_2$
Minimal over-subgroups:$C_{17}\times F_7$
Maximal under-subgroups:$C_{119}$$C_{51}$$C_7:C_3$

Other information

Möbius function$-1$
Projective image$F_7$