Properties

Label 7114752.a.64.I
Order $ 2^{6} \cdot 3^{2} \cdot 193 $
Index $ 2^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1158}:C_{96}$
Order: \(111168\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 193 \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \)
Generators: $b^{192}, b^{12352}, b^{18528}, a^{18}b^{24}, a^{64}, a^{96}b^{32832}, a^{36}b^{20208}, a^{72}b^{33120}, a^{144}b^{12096}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{193}:C_{192}^2$
Order: \(7114752\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_{32}$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(32\)\(\medspace = 2^{5} \)
Automorphism Group: $C_8.C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_8.C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(455344128\)\(\medspace = 2^{18} \cdot 3^{2} \cdot 193 \)
$\operatorname{Aut}(H)$ $C_{579}.C_{96}.C_2^3$
$W$$F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_{192}$
Normalizer:$C_{193}:C_{192}^2$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$16$
Möbius function not computed
Projective image not computed