Properties

Label 7114752.a
Order \( 2^{12} \cdot 3^{2} \cdot 193 \)
Exponent \( 2^{6} \cdot 3 \cdot 193 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{12} \cdot 3^{2} \)
$\card{Z(G)}$ \( 2^{6} \cdot 3 \)
$\card{\Aut(G)}$ \( 2^{18} \cdot 3^{2} \cdot 193 \)
$\card{\mathrm{Out}(G)}$ \( 2^{12} \cdot 3 \)
Perm deg. not computed
Trans deg. not computed
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath (using Gap)

Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([15, -2, -2, -2, -2, -2, -2, -3, -2, -2, -2, -2, -2, -2, -3, -193, 30, 76, 122, 168, 214, 260, 813980167, 207924502, 40924837, 30968692, 17696227, 11751202, 5944777, 352, 870963848, 467830103, 92080838, 69679493, 39816428, 26440103, 13375628, 398, 868262409, 506016024, 204624039, 21441654, 21780069, 25405284, 13048299, 444, 736243210, 526268185, 156689320, 47171575, 47916070, 19206085, 10363420, 490, 325693451, 507893786, 21703721, 102919736, 24503111, 1883606, 2600741, 536, 705669132, 406748187, 47024682, 49570617, 53089992, 4081047, 5634822, 582, 25804813, 129024028, 101283883, 106767418, 20966473, 8789848, 12136423, 838, 82944014, 414720029, 325555244, 143078459, 67392074, 28252889, 13996904]); a,b := Explode([G.1, G.8]); AssignNames(~G, ["a", "a2", "a4", "a8", "a16", "a32", "a64", "b", "b2", "b4", "b8", "b16", "b32", "b64", "b192"]);
 
Copy content gap:G := PcGroupCode(11177273180111500706608837865758518227853346719598449215037570350252164470114985652482604643196563243392052649581054117307399853603794225011567069111846881573243991558906291056208073716033364333477364227478741836131269735326793447482499539107666781231155889353594660894351743370098166214560033711148880369717776046392435622532035126081602826771317986325315132151432695171167269029393923611703133037392603991064455257769902568561613850470757447649863001829926890886897410294199697284658623186817167997839715041996622648561057987953789239679,7114752); a := G.1; b := G.8;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11177273180111500706608837865758518227853346719598449215037570350252164470114985652482604643196563243392052649581054117307399853603794225011567069111846881573243991558906291056208073716033364333477364227478741836131269735326793447482499539107666781231155889353594660894351743370098166214560033711148880369717776046392435622532035126081602826771317986325315132151432695171167269029393923611703133037392603991064455257769902568561613850470757447649863001829926890886897410294199697284658623186817167997839715041996622648561057987953789239679,7114752)'); a = G.1; b = G.8;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11177273180111500706608837865758518227853346719598449215037570350252164470114985652482604643196563243392052649581054117307399853603794225011567069111846881573243991558906291056208073716033364333477364227478741836131269735326793447482499539107666781231155889353594660894351743370098166214560033711148880369717776046392435622532035126081602826771317986325315132151432695171167269029393923611703133037392603991064455257769902568561613850470757447649863001829926890886897410294199697284658623186817167997839715041996622648561057987953789239679,7114752)'); a = G.1; b = G.8;
 

Group information

Description:$C_{193}:C_{192}^2$
Order: \(7114752\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 193 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage:G.Order()
 
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage:G.Exponent()
 
Automorphism group:Group of order \(455344128\)\(\medspace = 2^{18} \cdot 3^{2} \cdot 193 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_3$ x 2, $C_{193}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage:G.DerivedLength()
 

This group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16 24 32 48 64 96 192 193 386 579 772 1158 1544 2316 3088 4632 6176 9264 12352 18528 37056
Elements 1 387 1160 1932 4248 8496 17760 35520 72576 145152 293376 586752 1179648 4730880 192 192 384 384 384 768 768 1536 1536 3072 3072 6144 6144 12288 7114752
Conjugacy classes   1 3 8 12 24 48 96 192 384 768 1536 3072 6144 24576 1 1 2 2 2 4 4 8 8 16 16 32 32 64 37056
Divisions 1 3 4 6 12 12 24 24 48 48 96 96 192 384 1 1 1 1 1 1 1 1 1 1 1 1 1 1 964

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath (using Gap)


Presentation: $\langle a, b \mid a^{192}=b^{37056}=1, b^{a}=b^{35329} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([15, -2, -2, -2, -2, -2, -2, -3, -2, -2, -2, -2, -2, -2, -3, -193, 30, 76, 122, 168, 214, 260, 813980167, 207924502, 40924837, 30968692, 17696227, 11751202, 5944777, 352, 870963848, 467830103, 92080838, 69679493, 39816428, 26440103, 13375628, 398, 868262409, 506016024, 204624039, 21441654, 21780069, 25405284, 13048299, 444, 736243210, 526268185, 156689320, 47171575, 47916070, 19206085, 10363420, 490, 325693451, 507893786, 21703721, 102919736, 24503111, 1883606, 2600741, 536, 705669132, 406748187, 47024682, 49570617, 53089992, 4081047, 5634822, 582, 25804813, 129024028, 101283883, 106767418, 20966473, 8789848, 12136423, 838, 82944014, 414720029, 325555244, 143078459, 67392074, 28252889, 13996904]); a,b := Explode([G.1, G.8]); AssignNames(~G, ["a", "a2", "a4", "a8", "a16", "a32", "a64", "b", "b2", "b4", "b8", "b16", "b32", "b64", "b192"]);
 
Copy content gap:G := PcGroupCode(11177273180111500706608837865758518227853346719598449215037570350252164470114985652482604643196563243392052649581054117307399853603794225011567069111846881573243991558906291056208073716033364333477364227478741836131269735326793447482499539107666781231155889353594660894351743370098166214560033711148880369717776046392435622532035126081602826771317986325315132151432695171167269029393923611703133037392603991064455257769902568561613850470757447649863001829926890886897410294199697284658623186817167997839715041996622648561057987953789239679,7114752); a := G.1; b := G.8;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11177273180111500706608837865758518227853346719598449215037570350252164470114985652482604643196563243392052649581054117307399853603794225011567069111846881573243991558906291056208073716033364333477364227478741836131269735326793447482499539107666781231155889353594660894351743370098166214560033711148880369717776046392435622532035126081602826771317986325315132151432695171167269029393923611703133037392603991064455257769902568561613850470757447649863001829926890886897410294199697284658623186817167997839715041996622648561057987953789239679,7114752)'); a = G.1; b = G.8;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11177273180111500706608837865758518227853346719598449215037570350252164470114985652482604643196563243392052649581054117307399853603794225011567069111846881573243991558906291056208073716033364333477364227478741836131269735326793447482499539107666781231155889353594660894351743370098166214560033711148880369717776046392435622532035126081602826771317986325315132151432695171167269029393923611703133037392603991064455257769902568561613850470757447649863001829926890886897410294199697284658623186817167997839715041996622648561057987953789239679,7114752)'); a = G.1; b = G.8;
 
Matrix group:$\left\langle \left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 5 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 0 & 116 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{193})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(193) | [[1, 1, 0, 1], [1, 0, 0, 5], [5, 0, 0, 116]] >;
 
Copy content gap:G := Group([[[ Z(193)^0, Z(193)^0 ], [ 0*Z(193), Z(193)^0 ]], [[ Z(193)^0, 0*Z(193) ], [ 0*Z(193), Z(193) ]], [[ Z(193), 0*Z(193) ], [ 0*Z(193), Z(193)^191 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(193), 2, 2) G = MatrixGroup([MS([[1, 1], [0, 1]]), MS([[1, 0], [0, 5]]), MS([[5, 0], [0, 116]])])
 
Direct product: $C_{64}$ $\, \times\, $ $C_3$ $\, \times\, $ $F_{193}$
Semidirect product: $C_{193}$ $\,\rtimes\,$ $C_{192}^2$ $(C_{12352}:C_{64})$ $\,\rtimes\,$ $C_3^2$ more information
Trans. wreath product: not computed
Possibly split product: $F_{193}$ . $C_{192}$ $C_{192}$ . $F_{193}$ $D_{386}$ . $C_{96}^2$ $C_{37056}$ . $C_{192}$ all 321

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{192}^{2} \simeq C_{64}^{2} \times C_{3}^{2}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage:G.AllSubgroups()
 

There are 2216 normal subgroups (143 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{192}$ $G/Z \simeq$ $F_{193}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage:G.Center()
 
Commutator: $G' \simeq$ $C_{193}$ $G/G' \simeq$ $C_{192}^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_{32}$ $G/\Phi \simeq$ $C_6\times F_{193}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{37056}$ $G/\operatorname{Fit} \simeq$ $C_{192}$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{193}:C_{192}^2$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{1158}$ $G/\operatorname{soc} \simeq$ $C_{32}\times C_{192}$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_{64}^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
193-Sylow subgroup: $P_{ 193 } \simeq$ $C_{193}$

Subgroup diagram and profile

Series

Derived series $C_{193}:C_{192}^2$ $\rhd$ $C_{193}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage:G.DerivedSeriesOfGroup()
 
Chief series $C_{193}:C_{192}^2$ $\rhd$ $C_{192}\times C_{193}:C_{96}$ $\rhd$ $C_{37056}.C_{48}$ $\rhd$ $C_{37056}.C_{24}$ $\rhd$ $C_{37056}.C_{12}$ $\rhd$ $C_{37056}.C_6$ $\rhd$ $C_{12352}:C_3^2$ $\rhd$ $C_{37056}$ $\rhd$ $C_{18528}$ $\rhd$ $C_{9264}$ $\rhd$ $C_{4632}$ $\rhd$ $C_{2316}$ $\rhd$ $C_{1158}$ $\rhd$ $C_{579}$ $\rhd$ $C_{193}$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage:G.ChiefSeries()
 
Lower central series $C_{193}:C_{192}^2$ $\rhd$ $C_{193}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_{192}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $37056 \times 37056$ character table is not available for this group.

Rational character table

The $964 \times 964$ rational character table is not available for this group.