Properties

Label 7114752.a.36.A
Order $ 2^{10} \cdot 193 $
Index $ 2^{2} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{6176}:C_{32}$
Order: \(197632\)\(\medspace = 2^{10} \cdot 193 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6176\)\(\medspace = 2^{5} \cdot 193 \)
Generators: $a^{96}, b^{192}, b^{18528}, b^{2316}, b^{1158}, a^{6}, a^{12}, b^{9264}, a^{24}, b^{4632}, a^{48}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{193}:C_{192}^2$
Order: \(7114752\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_6^2$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Outer Automorphisms: $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(455344128\)\(\medspace = 2^{18} \cdot 3^{2} \cdot 193 \)
$\operatorname{Aut}(H)$ $C_{3088}.C_{24}.C_8^2.C_2^2$
$W$$F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_{192}$
Normalizer:$C_{193}:C_{192}^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6\times F_{193}$