Subgroup ($H$) information
Description: | $C_{6176}:C_{32}$ |
Order: | \(197632\)\(\medspace = 2^{10} \cdot 193 \) |
Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Exponent: | \(6176\)\(\medspace = 2^{5} \cdot 193 \) |
Generators: |
$a^{96}, b^{192}, b^{18528}, b^{2316}, b^{1158}, a^{6}, a^{12}, b^{9264}, a^{24}, b^{4632}, a^{48}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
Description: | $C_{193}:C_{192}^2$ |
Order: | \(7114752\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 193 \) |
Exponent: | \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_6^2$ |
Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Outer Automorphisms: | $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(455344128\)\(\medspace = 2^{18} \cdot 3^{2} \cdot 193 \) |
$\operatorname{Aut}(H)$ | $C_{3088}.C_{24}.C_8^2.C_2^2$ |
$W$ | $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
Related subgroups
Centralizer: | $C_{192}$ |
Normalizer: | $C_{193}:C_{192}^2$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $C_6\times F_{193}$ |