Properties

Label 7114752.a.32.A
Order $ 2^{7} \cdot 3^{2} \cdot 193 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{9264}:C_{24}$
Order: \(222336\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 193 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)
Generators: $b^{18528}, b^{192}, b^{12352}, b^{2316}, a^{24}, a^{64}, b^{9264}, a^{48}, b^{4632}, a^{96}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{193}:C_{192}^2$
Order: \(7114752\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_4\times C_8$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
Outer Automorphisms: $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(455344128\)\(\medspace = 2^{18} \cdot 3^{2} \cdot 193 \)
$\operatorname{Aut}(H)$ $C_{2316}.C_{96}.C_2.C_2^5$
$W$$F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_{192}$
Normalizer:$C_{193}:C_{192}^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_4\times F_{193}$