Properties

Label 7114752.a.3.A
Order $ 2^{12} \cdot 3 \cdot 193 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2371584\)\(\medspace = 2^{12} \cdot 3 \cdot 193 \)
Index: \(3\)
Exponent: not computed
Generators: $b^{18528}, b^{4632}, a^{24}, b^{1158}, a^{3}, a^{12}, a^{96}, b^{2316}, a^{6}, b^{579}, a^{48}, b^{9264}, b^{192}, b^{12352}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor, a semidirect factor, elementary, metacyclic, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_{193}:C_{192}^2$
Order: \(7114752\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(455344128\)\(\medspace = 2^{18} \cdot 3^{2} \cdot 193 \)
$\operatorname{Aut}(H)$ not computed
$W$$F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_{192}$
Normalizer:$C_{193}:C_{192}^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$F_{193}$