Properties

Label 709236.a.9.d1
Order $ 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 $
Index $ 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times F_{199}$
Order: \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Generators: $a^{18}, a^{132}b^{1428}, b^{18}, a^{110}b^{14}, b^{1791}, a^{99}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{18}\times F_{199}$
Order: \(709236\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_9$
Order: \(9\)\(\medspace = 3^{2} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1791}.C_{33}.C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_2\times F_{199}$, of order \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \)
$W$$F_{199}$, of order \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)

Related subgroups

Centralizer:$C_{18}$
Normalizer:$C_{18}\times F_{199}$
Complements:$C_9$ $C_9$ $C_9$
Minimal over-subgroups:$C_6\times F_{199}$
Maximal under-subgroups:$C_{199}:C_{198}$$F_{199}$$C_{398}:C_{66}$$C_{398}:C_{18}$$C_2\times C_{198}$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$9$
Möbius function$0$
Projective image$C_9\times F_{199}$