Properties

Label 709236.a.78804.d1
Order $ 3^{2} $
Index $ 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $a^{110}b^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_{18}\times F_{199}$
Order: \(709236\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1791}.C_{33}.C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{18}\times C_{198}$
Normalizer:$C_{18}\times C_{198}$
Normal closure:$C_{398}:C_{18}$
Core:$C_1$
Minimal over-subgroups:$C_{199}:C_9$$C_{99}$$C_3\times C_9$$C_{18}$$C_{18}$
Maximal under-subgroups:$C_3$

Other information

Number of subgroups in this autjugacy class$1791$
Number of conjugacy classes in this autjugacy class$9$
Möbius function$0$
Projective image$C_{18}\times F_{199}$