Properties

Label 709236.a.1791.d1
Order $ 2^{2} \cdot 3^{2} \cdot 11 $
Index $ 3^{2} \cdot 199 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{198}$
Order: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Index: \(1791\)\(\medspace = 3^{2} \cdot 199 \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Generators: $a^{99}b^{2880}, a^{110}b^{16}, a^{18}b^{2718}, b^{1791}, a^{132}b^{1632}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{18}\times F_{199}$
Order: \(709236\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1791}.C_{33}.C_6^2.C_2$
$\operatorname{Aut}(H)$ $D_6\times C_{30}$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{18}\times C_{198}$
Normalizer:$C_{18}\times C_{198}$
Normal closure:$C_{18}\times F_{199}$
Core:$C_2$
Minimal over-subgroups:$C_2\times F_{199}$$C_6\times C_{198}$
Maximal under-subgroups:$C_{198}$$C_{198}$$C_2\times C_{66}$$C_2\times C_{18}$

Other information

Number of subgroups in this autjugacy class$1791$
Number of conjugacy classes in this autjugacy class$9$
Möbius function$0$
Projective image$C_9\times F_{199}$