Properties

Label 700.35.25.a1.a1
Order $ 2^{2} \cdot 7 $
Index $ 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{14}$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Index: \(25\)\(\medspace = 5^{2} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $a, c^{10}, c^{35}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_5:D_{70}$
Order: \(700\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 7 \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_5^2:C_4.S_5\times F_7$
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{14}$
Normal closure:$C_5:D_{70}$
Core:$C_{14}$
Minimal over-subgroups:$D_{70}$$D_{70}$$D_{70}$$D_{70}$$D_{70}$$D_{70}$
Maximal under-subgroups:$C_{14}$$D_7$$D_7$$C_2^2$

Other information

Number of subgroups in this conjugacy class$25$
Möbius function$5$
Projective image$C_5:D_{35}$