Properties

Label 700.35.50.a1.a1
Order $ 2 \cdot 7 $
Index $ 2 \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Index: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $c^{35}, c^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_5:D_{70}$
Order: \(700\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 7 \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_5:D_5$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_5^2.\GL(2,5)$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)
Outer Automorphisms: $A_5:C_4$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_5^2:C_4.S_5\times F_7$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(168000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_5\times C_{70}$
Normalizer:$C_5:D_{70}$
Complements:$C_5:D_5$ $C_5:D_5$
Minimal over-subgroups:$C_{70}$$C_{70}$$C_{70}$$C_{70}$$C_{70}$$C_{70}$$D_{14}$
Maximal under-subgroups:$C_7$$C_2$

Other information

Möbius function$-125$
Projective image$C_5:D_{35}$