Properties

Label 6912.ia.8.a1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.A_4^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,7,5)(9,12,13)(10,14,11), (4,7)(5,6), (4,5)(6,7)(8,14,15,12)(9,11,10,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $D_6.S_4^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times A_4^2.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $C_3:(S_3\times S_4^2)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$W$$C_2\times S_4^2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$D_6.S_4^2$
Complements:$C_2^3$ $C_2^3$ $C_2^3$ $C_2^3$
Minimal over-subgroups:$D_6.A_4^2$$C_3\times S_4\times \SL(2,3)$$C_3\times A_4\times \GL(2,3)$$C_3:S_4\times \SL(2,3)$$A_4\times C_3:\GL(2,3)$$C_3\times A_4:\GL(2,3)$$(C_3\times A_4):\GL(2,3)$
Maximal under-subgroups:$Q_8:C_6^2$$C_2^3.C_6^2$$A_4\times \SL(2,3)$$C_3\times Q_8:A_4$$A_4\times \SL(2,3)$$A_4\times \SL(2,3)$$A_4\times \SL(2,3)$$C_6^2:C_6$$C_3^2\times \SL(2,3)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-8$
Projective image$S_3\times S_4^2$