Properties

Label 6912.ia.1.a1
Order $ 2^{8} \cdot 3^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6.S_4^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Index: $1$
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(4,7,5)(9,12,13)(10,14,11), (4,5)(6,7)(8,14,15,12)(9,11,10,13), (1,2), (8,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $D_6.S_4^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times A_4^2.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $C_2^3\times A_4^2.C_2^2\times S_3$
$W$$S_3\times S_4^2$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_6.S_4^2$
Complements:$C_1$
Maximal under-subgroups:$S_3\times S_4\times \SL(2,3)$$S_3\times A_4\times \GL(2,3)$$S_3\times A_4:\GL(2,3)$$C_6.S_4^2$$C_6.S_4^2$$C_6.S_4^2$$C_6.S_4^2$$C_2^2.S_4^2$$S_3\times D_4\times \GL(2,3)$$S_3\times \SD_{16}\times S_4$$A_4:D_6^2$$S_3^2\times \GL(2,3)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$S_3\times S_4^2$