Properties

Label 6912.ia.3.a1
Order $ 2^{8} \cdot 3^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2.S_4^2$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(5,7), (4,7,5)(9,12,13)(10,14,11), (4,7)(5,6), (4,5)(6,7)(8,14,15,12)(9,11,10,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $D_6.S_4^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times A_4^2.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $A_4^2.C_2^5.C_2^2$
$W$$S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2.S_4^2$
Normal closure:$D_6.S_4^2$
Core:$S_4\times \GL(2,3)$
Minimal over-subgroups:$D_6.S_4^2$
Maximal under-subgroups:$S_4\times \GL(2,3)$$C_2\times S_4\times \SL(2,3)$$C_2\times A_4\times \GL(2,3)$$C_2\times A_4:\GL(2,3)$$S_4\times \GL(2,3)$$S_4\times \GL(2,3)$$S_4\times \GL(2,3)$$C_2\times D_4\times \GL(2,3)$$C_2\times \SD_{16}\times S_4$$C_2^2:D_6^2$$D_6\times \GL(2,3)$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$S_3\times S_4^2$