Properties

Label 6912.ia.4.a1
Order $ 2^{6} \cdot 3^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6.A_4^2$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,7,5)(9,12,13)(10,14,11), (4,7)(5,6), (4,5)(6,7)(8,14,15,12)(9,11,10,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and solvable.

Ambient group ($G$) information

Description: $D_6.S_4^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times A_4^2.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $D_6\times S_4^2$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
$W$$S_3\times S_4^2$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_6.S_4^2$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$S_3\times S_4\times \SL(2,3)$$S_3\times A_4\times \GL(2,3)$$S_3\times A_4:\GL(2,3)$
Maximal under-subgroups:$C_6.A_4^2$$C_2\times D_6\times \SL(2,3)$$S_3\times Q_8\times A_4$$C_2^2.A_4^2$$S_3\times Q_8:A_4$$C_6\times S_3\times A_4$$C_3\times S_3\times \SL(2,3)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$S_3\times S_4^2$