Properties

Label 6912.ia.72.mp1
Order $ 2^{5} \cdot 3 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8\times D_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(5,7), (8,9,15,10)(11,14,13,12), (1,2,3), (8,14,15,12)(9,11,10,13), (1,2), (8,15)(9,10)(11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Ambient group ($G$) information

Description: $D_6.S_4^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times A_4^2.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$W$$S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$Q_8:D_6^2$
Normal closure:$C_2^3.D_6^2$
Core:$S_3\times Q_8$
Minimal over-subgroups:$D_6\times \SL(2,3)$$Q_8\times S_3^2$$C_{12}.C_2^4$$D_6\times \SD_{16}$$D_6\times \SD_{16}$
Maximal under-subgroups:$S_3\times Q_8$$C_4\times D_6$$S_3\times Q_8$$C_6:Q_8$$C_6\times Q_8$$S_3\times Q_8$$S_3\times Q_8$$C_2^2\times Q_8$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$6$
Projective image$S_3\times S_4^2$