Properties

Label 6912.ia.36.p1
Order $ 2^{6} \cdot 3 $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.C_2^4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(5,7), (1,2,3), (8,14,15,12)(9,11,10,13), (1,2), (8,15)(9,10)(11,13)(12,14), (4,6)(5,7)(8,14,15,12)(9,11,10,13), (4,6)(5,7)(8,11,15,13)(9,12,10,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Ambient group ($G$) information

Description: $D_6.S_4^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times A_4^2.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $C_2^9.(S_4\times S_3^2)$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \)
$W$$D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$S_3\times D_4\times \GL(2,3)$
Normal closure:$C_2^3.D_6^2$
Core:$S_3\times Q_8$
Minimal over-subgroups:$C_2\times D_6\times \SL(2,3)$$C_{24}:C_2^4$$S_3\times Q_8:D_4$$S_3\times D_4\times Q_8$
Maximal under-subgroups:$C_{12}:C_2^3$$Q_8\times D_6$$Q_8\times D_6$$Q_8\times D_6$$Q_8\times D_6$$C_6.C_2^4$$C_6.C_2^4$$Q_8\times D_6$$Q_8\times D_6$$Q_8\times D_6$$Q_8\times D_6$$Q_8\times C_2^3$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$S_3\times S_4^2$