Subgroup ($H$) information
| Description: | $D_6\times \SD_{16}$ | 
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) | 
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Generators: | $\langle(1,2), (8,15)(9,10)(11,13)(12,14), (8,9,15,10)(11,14,13,12), (1,2,3), (5,7), (8,14,15,12)(9,11,10,13), (5,7)(9,10)(11,12)(13,14)\rangle$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $D_6.S_4^2$ | 
| Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^3\times A_4^2.C_2^2\times S_3$ | 
| $\operatorname{Aut}(H)$ | $C_3:(C_2^5.C_2^5)$ | 
| $W$ | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $18$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $-2$ | 
| Projective image | $S_3\times S_4^2$ | 
