Properties

Label 6912.ia.64.b1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times D_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(5,7), (4,7,5)(9,12,13)(10,14,11), (1,2,3), (4,5,7), (8,15)(9,10)(11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_6.S_4^2$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times A_4^2.C_2^2\times S_3$
$\operatorname{Aut}(H)$ $D_6\times \GL(2,3)$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_2\times S_3^3$
Normal closure:$C_3\times S_4\times \SL(2,3)$
Core:$C_6$
Minimal over-subgroups:$A_4:C_6^2$$C_3\times S_3\times \SL(2,3)$$C_6\times S_3^2$$C_6\times S_3^2$$C_6:S_3^2$
Maximal under-subgroups:$C_3^2\times C_6$$S_3\times C_3^2$$C_6^2$$C_6\times S_3$$C_6\times S_3$$C_6\times S_3$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$S_3\times S_4^2$